
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 3, MAY 1995 643

A Universal Finite Memory Source
Marcel0 J. Weinberger, Member, IEEE, Jorma J. Rissanen, Senior Member, IEEE,

and Meir Feder. Senior Member. IEEE

Abs&uct- In this paper an irreducible parameterization for
a finite memory source is constructed in the form of a tree
machine. A universal information source for the set of finite
memory sources is constructed by a predictive modification of an
earlier studied algorithm-Context. It is shown that this universal
source incorporates any minimal data-generating tree machine
in an asymptotically optimal manner in the following sense:
the negative logarithm of the probability it assigns to any long
typical sequence, generated by any tree machine, approaches that
assigned by the tree machine at the best possible rate.

Index Terms-Universal coding, Context algorithm, finite mem-
ory sources, sequential decision, stochastic complexity, prediction.

I. INTRODUCTION

INITE memory sources are distinguished by the property F that the conditional probabilities of a symbol, given all
the past observations, actually depend only on a fixed smallest
number k of contiguous past observations. Hence, technically,
such sources are Markovian, the number k defining the order of
the process. However, when trying to fit Markov models to the
data by estimating the conditional probabilities at the dk states,
where d is the alphabet size, a number of difficulties arise.
First, we have to deal with the familiar explosive increase in
the number of states and the fitted parameters if we increase
the order of the Markov model to find the best fit. Secondly,
even when the order k is minimal, the probability parameters
defining the process are not necessarily irreducible, and hence
they cannot be efficiently estimated. This is because there
are in general equivalent states having identical conditional
probabilities. Again, if we attempt to remove the redundant
parameters by “lumping” together the equivalent states, we
may amve at the disturbing situation that the result is not a
finite state machine implementation of the process, let alone
one of a Markov type.

There is, however, a different but equally simple implemen-
tation of the process, which is described by an irreducible set
of probability parameters. We call it a “tree source,” and define
it formally in Section I1 after a discussion of finite memory

Manuscript received September 21, 1992; revised October 11, 1994. The
material in this paper was presented in part at the 1993 IEEE Intemational
Symposium on Information Theory, San Antonio, TX, January 17-22, 1993.
This research was done while one of the authors (M. J. Weinberger) was
with the Department of Electrical Engineering, Technion-Israel Institute of
Technology, Haifa 32000, Israel.

M. J. Weinberger is with Hewlett-Packard Laboratories, Building 3U, POB
10490, Palo Alto, CA 94303 USA.

J. J . Rissanen is with IBM Almaden Research Center, San Jose, CA 95 120-
6099 USA.

M. Feder is with the Department of Electrical Engineering-Systems, Tel-
Aviv University, 69978 Tel-Aviv, Israel.

IEEE Log Number 9410422.

sources. In an incomplete form, such a tree was utilized in
the data compression algorithm Context, introduced in [11 and
modified and generalized in [2] and [5] . This algorithm has
two main stages, a tree that grows with a string for gathering
the conditional symbol statistics, and a rule for selecting the
optimal context on which to condition each observed symbol.
Inspired by the Context selection rule in [5] we describe in
this paper a sequential modeling scheme based on a predictive
rule, which overcomes the state explosion problem and is
both simple to implement and to analyze. Most importantly,
as it is fully sequential it actually defines in a practical
manner a universal finite memory source, which incorporates
asymptotically optimal estimation of the best minimal data
generating tree source that fits the data.

Let us further elaborate on the concept of “universal source.”
The idea of a universal data compression algorithm goes back
to Kolmogorov. Here we go a step further and introduce the
notion of a universal information source which is close, in an
asymptotic sense, to any source in the class with respect to
which it is universal. It is meant to replace any source in the
class wherever models are needed; we discuss some of the
applications in the last section. Another more general context-
based universal random process for time series and chaotic
processes was discussed in [4]. The sense of universality in
a model is akin to a universal Turing machine which can
imitate any special-purpose machine; i.e., a program. Since
the particular tree machines are here given or presented to us
only through the data they generate, the universal information
source imitates each such machine exactly only in the limit.
However, it assigns to every long typical string, generated
by any Markov source, a probability which is almost as
large as the probability of the string assigned by the data
generating source. This means that for long typical strings,
the model provided by the universal source behaves like
the “true” system for all tasks we wish to use the model
for, such as coding, prediction, and decision in general. In
particular, the universal source with arithmetic coding provides
a universal data compression algorithm such that the mean
per symbol code length not only approaches the entropy of
any data generating source but does it at an optimal rate,
P I .

More specifically, let P(x“) and PT(zn) denote the prob-
abilities assigned to the string xn by the universal source and
by any data generating finite-memory source with K sets of
equivalent states, respectively. Using techniques developed in
[6] we prove a theorem stating a strong asymptotic optimality
of the universal source both in the almost sure sense and in

0018-9448/95$04.00 0 1995 IEEE

644 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 3, MAY 1995

the mean, namely, 0 , 1 , . . . , each P, defined on the set A" of all strings zn =
z1 . . . z, of length n, such that the marginality condition

1 PT(X,) K (d - 1) -log- < ~ logn + 0 (l/n).
n P(X ,) - 2n P,+l(znz) = Pn(xG") (2) (1)

The set of the tree sources satisfies also the conditions in
[2], which imply that the strict reverse inequality in (1) holds
for any source P (X n) , however arrived at, and all T , with
its parameters in a compact K(d - 1)-dimensional set with
nonempty interior, except in a subset of measure zero. The
right-hand side, then, represents the asymptotically optimal
model complexity in terms of the code length needed to encode
the model which leads to the asymptotically shortest code
length for the data. This means that regardless of which
estimation method one employs it is impossible, at least
asymptotically, to "learn" the data-generating mechanism, the
tree machine, better than is done by using the universal
algorithm Context. In [6] a variant of algorithm Context
was studied in which the context selection was done using
hypothesis testing, modified by data-length-dependent thresh-
olds (the right-hand side of (1)) given in the theory of

x E A

holds for all n; here znx = x1 . ..z,z, and P0(zo) = 1,
where zo is the empty string, also written as A. The additional
requirement of stationarity may be expressed by the symmetric
condition

P,+l(zzn) = P,(zn) (3)
x E A

for all n. As a rule, we write Pn(zn) = P(z") by omitting
the subindex. Note that (2) and (3) define a consistent and
stationary measure P.

In applications the probability function P(x") must be such
that it can be easily constructed. One of the familiar ways to
do it is in terms of the conditional probability function

P(zl5:") = P(z"z) /P(z")
stochastic complexity. The resulting algorithm was shown to
be asymptotically optimal for the class of FSMX sources [2]
defined in Section 11, which is a subclass of the tree sources.

which in view of (2) is well-defined. Then, it is required to
satisfy the condition

However, unlike our results here, the implementation of the
context selection rule becomes impractical in case an upper
bound on the length of the contexts is not available, a case
that needs to be covered for a complete universality.

The universal source presented in this paper is based on the
explicit sequential estimation of a finite memory model, which
is used at each time instant to define the probability distribution
assigned to the next symbol. This plug-in approach not only
assigns to the data a probability that is close to that assigned
by any finite memory source, but it also tracks the best model
that fits the data. It generates a random process whether or
not the data have been generated by a finite memory source,
and (1) holds for long typical sequences generated by such
sources. As discussed in [7], it turns out that (1) does not
hold for every sequence. An alternative approach, in which a
(Bayesian) "mixture" of all models in a class is used to define
a universal random process, is investigated in [7]. Although
the "mixture" approach lacks the explicit model estimation,
it is shown in [7] that the probability it assigns satisfies (1)
pointwise, i.e., for every sequence. A practical implementation
of this approach for tree sources, however, requires an upper
bound on the length of the contexts as in [6].

The remainder of this paper is organized as follows. In
Section 11, we discuss finite-memory sources and formally
define the tree sources. In Section 111, the algorithm Context is
presented as a universal source for the finite memory class. The
main results, which establish the universality of the source, are
stated in Section IV and proved in Appendixes I and 11. Finally,
applications of the universal source beyond compression are
discussed in Section V.

P(51zGn) = P(zls(zn)) (4)

for all z E A, where s (P) is a function with finite range S, a
fixed (with respect to n) state space. One way of specifying the
function s(zG") is by a finite state machine (FSM) as follows:
First, .(A) = SO selects an initial state. Then, recursively

s(zn+l) = f(s(z"),z,+1) (5)

where f : S x A H S is the state transition map of the
machine. The source is then defined by the K x (d - 1)
conditional probabilities and the function f (s, z) together
with the initial state, where K is the number of states. Such
sources are called finite-state-machine-generated sources or
FSM sources for short.

However, fitting FSM sources to data is still a complex
matter, especially when one wants to search through machines
with different numbers of states, because of the large number
of possible state transition functions to be explored. There
is an important subclass of sources, which we call Finite
Memory or Tree sources, which can be estimated much more
conveniently using a modification of the algorithm Context,
[l] , [2], and [5] , described below. Although strictly speaking
these random processes are still Markovian, they cannot be
efficiently estimated by fitting a Markov machine to the data.
The distinguishing property of a Markov process is that the
function s (z n) not only has a finite fixed range S and satisfies
(5) but it also is of the form

S(Zc") = 5 , ' . ' Z,-k+l (6)

where k is the order of the process, and the reversed string
s(xc") for n 2 IC is a state.'

11. FINITE -MEMORY SOURCES

is defined by a family of probability measures Pn(zn), n =

' Here, we distinguish between a Markov source, namely a special case of
FSM source satisfying (6). and a Markov chain. In fact, any FSM source is a An information Source Over a finite A Of

Markov chain on S.

WEINBERGEK et al.: A UNIVERSAL FINITE MEMORY SOURCE 645

In view of the crucial requirement (4) it is clear that the
right-hand side string in (6) should be as short as possible.
Indeed, if for some i , 0 5 z < k , some string zn-;+l . . . zn,
and all strings z,-k+lL,-,

P(z/z,-,+1 . ’ ‘ . E ,) = P (Z 1 5 , , _ k + l . ’ . z,)

for all .E E A, then the set of states defined by the same
suffix -6,-,+1. . . E , would be equivalent and could be lumped
together and represented by the suffix without any change in
the process. The problem is that the resulting set of the shortest
strings, which now need not be of the same length, may not
admit an FSM description let alone a Markov one to generate
the process. (Such an example is given in the last paragraph of
this section.) On the other hand, if the states are not collapsed,
the estimation of the distribution P(ZIL,-,+I . . . zn) repeat-
edly in each of the equivalent states; i.e., from the symbol
occurrences following the longer strings . c , -k+l . . .z,, would
involve estimation of redundant parameters. These would then
have to be estimated from fewer symbol occurrences than in
the case where the same distribution is estimated from the
symbol occurrences following the shorter string z,-,+1. . . xn,
resulting in suboptimal convergence.

These intuitive ideas can be formalized in terms of the
model complexity, as the smallest number of bits needed to
encode the parameters, which permits a measurement of the
effect of the parameter redundancy. The model complexity
restricts in a fundamental manner all the tasks the models
are used for, often prediction, and it is important to keep it
minimal, which can be achieved only when the parameters
are nonredundant. To summarize, an efficient estimation of
the conditional distributions (4) can only be done by count-
ing the symbol occurrences following the shortest possible
strings where (4) and (6) hold, which amounts to pooling
the symbol occurrences at the redundant states. However, the
set of the shortest strings satisfying (4) may admit no FSM
implementation.

Fortunately, there is another type of “machine” that can
do the implementation of a Markov source with an equally
simple tree architecture, to be described next. Let (4) hold for
a function s(z“) of the form

S (J ”) = ’ZO”(,-k+l) (7)

for some k 2 0, not necessarily the same for all strings, where
a V 0 denotes the larger of the two numbers; the case IC = 0
is interpreted as defining the empty string X = 50. Hence, for
71 5 k , s(L”) = 5 ,LO, so that the function is defined for
strings of every length, even for n = 0. Any suffix of zn,
written in reverse order as znzn-l . . ., is called a context in
which the “next” symbol zr1+1 occurs. The “terminal contexts”
(7) (the shortest contexts satisfying (4)) act as states, but they
do not necessarily satisfy (5). And, as we argued above, in
fitting models it is the set of terminal contexts rather than
the states of an FSM that are important. The difference is
particularly dramatic in raster-scan images, where the value
of a pixel is influenced mostly by the context defined by its
few nearby past pixels. While the number of states of an FSM
that would include these relevant pixels would be enormous,

including all the pixels in between as well, a state space (7) can
be implemented by a tree structure after a suitable reordering
of the data scanned prior to x,+~. With an FSM, it would be
completely hopeless and useless to fit probability parameters
to such a huge number of states.

Consider a d-ary tree, where the branches are labeled by the
symbols in the alphabet. Each context defines a node in the
tree reached by the path starting at the root with the branch :E, ,

followed by the branch znPl, and so on. The range S defines a
complete’ subtree T with the set of leaves denoted S (T) = S.
Note that the use of the same notation for both the set of
leaves of T and the set of states of an FSM emphasizes their
similarity, but it is not required that the tree model admit an
FSM implementation, as given by (5). To specify a stationary
source we need in addition a set of probability distributions
{ P (z (s) : s E S } , P(als) > 0 for all a E A and s E S .
Much as a prefix code permits decoding of codewords without
commas, the tree T permits finding a distinguished context (7)
for each symbol zt in the string zn and an implementation of
the probability P T (z ~) as

n-1

PT(Z,) = n P(”t+l Is(.”)) (8)

for any string zn. To compute PT(z”) it remains to define
the conditional probabilities in the right-hand side of (8) for
the very first values of t , for which the contexts defined
by (7) may not be leaves. One way to set these initial
conditions is by use of a stationarity constraint. In this case,
the conditional distributions at the leaves induce a unique
conditional distribution P(z lw) for each internal node w as
follows. First, we extend the tree T to the perfectly balanced’
complete supertree of T having the same height as T , and
assign the conditional distribution P(z1s) to each leaf S ~ L

of the extended tree. Each such leaf defines a state of a
Markov process. These conditional distributions, which define
the state transition probabilities, are positive and, therefore,
the corresponding chain is irreducible. Moreover, condition
(6) clearly implies aperiodicity and hence ergodicity. Thus
there exists a unique stationary distribution over the states.
Next, this distribution defines, in turn, a unique probability
of each node by the requirement (3) and by (2) a conditional
distribution at each node of the tree T. For example, take
S = {1.01,000~001}. as the (prefix) set of states (reversed
strings). To find the conditional distribution in the internal
node 0, we have first P(OI0) = P(OO)/P(O) and then

t=O

P(OO0) + P (O O 1)
P(000) + P(001) + P(010) + P (0 l l) ‘

P(OI0) =

Finally, the stationary probabilities of the triplets are obtained
by extending S to a third-order Markov source and finding its
invariant distribution.

Although the probability PT(z,) is well-defined, it will
simplify later analysis if we let the machine define a slightly

2 A ti-ary tree is said to be complete if each node either is a leaf or has

3 A complete tree is said to be perfectly balanced if all the paths from the
exactly d offspring.

root to the leaves have the same length.

646 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 3, MAY 1995

different probability function by changing the initial condi-
tions. Let SO denote the all-zero leaf in the tree T , which
plays the same role as an initial state in finite-state machines,
and let 7 be the maximum depth of the tree T. We then put

n - 1

(9)
t=O

where O‘zt denotes the string xt padded with 7 initial zeros.
This guarantees that the state is well-defined for every t > 0,
which might not be the case otherwise. Let S denote the string
s written in reverse. Then, (9) can further be written in terms
of sufficient statistics as

s E S a E A

where n,(als) denotes the number of times the string %a
occurs as a substring in OIslz, less the number of times it
occurs as a substring in the string of zeros 01’1 given by the
length Is1 of s. This definition of the counts insures that for
all a E A and all strings z

U

where sw runs through all the leaves of any complete subtree
rooted at s. Because of the initial edge effect this would not
hold exactly if n,(als) were defined to be the number of times
Sa occurs in x.

The tree T is called minimal, if for every node w in T
with all its successors wv as leaves, there exist a, b, and c in
A satisfying P(a1wb) # P(a1wc). Clearly, if for some such
node w the distributions P(.lwb) are equal for all b, we could
lump the successors into w and have a smaller complete tree
representing the same process. If a minimal tree T admits an
FSM implementation, (3, the source is also called an FSMX
(generated) source. Not every minimal tree admits such an
implementation. Indeed, if s(z”) = z, . . . X n - k , then (5) can
hold only if the next state s (z n f l) is uniquely determined
by the string X n - k . ‘ . zn , zn+l and hence its length cannot
exceed that of s(z”) by more than one symbol, while no such
restriction need hold for the contexts or the lengths of the
leaves of a complete tree. The following simple example was
given in [6]: Take S = {1,00,010,011}, where the strings
read in reverse are supposed to be the states. What would be
the state following an emission of “0” at state l? Clearly, there
is no such state satisfying (5) , because the only state of length
two is 00 , which cannot be reached from state 1 . By contrast,
with a tree model, the tree T with S as the set of leaves will
parse from the string . . . l o as long a context as needed to reach
a leaf, either 011 if the string is . . . 110, or 010 if the string is
. . . O l O . The exceptions, of course, are strings shorter than the
path to the leaves, for which the tree will assign the probability
by the intemal nodes as indicated prior to (8). In conclusion,
we mention that a minimal tree guarantees that no node w, all
of whose successors are leaves, can be equivalent to all these
successors, which, consequently, cannot be replaced by the
father node w. Notice that even in a minimal tree there may
well be other sets of equivalent leaves, not necessarily siblings,

having the same associated conditional probabilities. These
equivalent nodes could, in principle, be lumped together thus
reducing the number of parameters of the process. However,
such a reduced parameterization may no longer admit a simple
tree implementation nor a practical construction of a universal
source, and we do not discuss such more general parametric
representations of Markov sources in this paper.

111. A UNIVERSAL FINITE-MEMORY SOURCE

The algorithm Context, introduced in [l] and improved in
[2] and [5] , provides a practical means to estimate Markov
sources in the tree form. The algorithm has two stages, the first
for growing a large tree and the second for selecting from that
tree a distinguished context to define the function s (z t) and
hence the complete trees Tt . The algorithm grows the contexts
and updates the occurrence counts by the following rules:

Start with the root with its symbol counts all zero.
Recursively, having constructed the tree (which may
be incomplete) from xt, read the symbol xt+l. Climb
the tree according to the path defined by ztzt-l . . ., and
increment the count of symbol zt+l by one for every
node visited until the deepest node, say xt.. . zt-j+l,
is reached.
If the last updated count becomes at least 2, create a
new node xt . . . xt-j , and initialize its symbol counts to
zero, except for the symbol zt+l, whose count is set to
1 . This completes the construction of % + I .

The goal of this stage is to accumulate all the relevant
contexts and the associated symbol statistics in a practical
way as the length of the string grows. The tree will grow
only in directions where repeated symbol occurrences take
place, and the counts of all the symbols in all the contexts that
have occurred are gathered, except a few early occurrences
prior to the creation of the corresponding node. We could
even gather these missed ones by backtracking and updating
the counts, including those resulting from the padded initial
zeros, to obtain nz(a ls) as defined after (10). Mainly for the
simplicity in notation this is actually the case we analyze.
The main results, however, are valid even for the easier to
implement algorithm where the tree is grown by the given
rules 1) and 2).

While letting the tree grow the algorithm also selects a
certain distinguished context for each symbol zt+l from the
growing source string zt = z1 . . . z t . These contexts together
with the earlier ones are used to define the set of leaves St
of a complete tree Tt. There are several variants of the rule
for the “optimal” context selection. The rules in [l] and [2]
are based upon the application of the MDL principle or the
calculation of the stochastic complexity. They compare, in
effect, the difference between the empirical entropy of a father
node and the sum of the entropies of all its sons, against their
model cost difference, and makes the decision in favor of the
winner. As illustrated in [6] with an example, this rule does not
permit a consistent estimation of the data-generating source
in all the cases of interest. As a remedy, a quite different
context selection rule was proposed, one based upon the ideas
of hypothesis testing. In this an upper bound m on the model

WEINBERGER et al.: A UNIVERSAL FINITE MEMORY SOURCE 647

order is assumed to be known. Then the empirical entropy
calculated with each candidate model is compared with that
obtained when its contexts are extended to the length m,
and the shortest context for which the difference is below
a threshold t is chosen. A fixed threshold would not give
consistent context estimates, which is why the threshold is
required to shrink to zero at the same rate as the per-symbol
model complexity in the theory of stochastic complexity. In
the more general case where no maximum value for the model
order is assumed, the numbers 711 are increased with the length
of the processed sequence. Although the resulting algorithm
becomes prohibitively complex, since the estimation requires
sums of an exponentially growing number of terms, the rule
so modified was shown to provide a consistent estimation
of any FSMX-generated source as well as to achieve the
asymptotically optimal mean code length.

In [5] the original context selection rules in [11 and [2] were
modified in a particularly efficient and easy to implement way.
The algorithm was applied to a number of data compression
problems with impressive results. For example, in randomly
selected text files the per-symbol code length was typically
15-20% below the length obtained with a version of the
Ziv-Lempel algorithm. The analysis of the algorithm with
the given rule, however, turns out to be difficult, and in
the following we study an easier-to-analyze modified version
which still admits a reasonably simple implementation. To
state the rule define

unless

in which case Pz(als) = 0. We remind the reader that n,(als)
denotes the number of times the string sa occurs as a substring
in 01'1x less the number of times it occurs in 01'1. For each
node sb, b E A, in a tree define

This is extended to the root node by &(A) = 02. In words,
A,(sb) denotes the (ideal) code length difference when the
symbol occurrences in context sb have been encoded with
the statistics gathered at the father node s and with its own
statistics. It is clearly nonnegative. This differs from the cross
entropy used in [l] , [2], and [6], written here not-per symbol
occurrence but as follows:

Afiz(s) = 71,(s)f iz(s) - n,(sb)fiz(sb)
bEA

where

H,(s) = -
aE.4

The cross entropy is also nonnegative. By permitting the
code length comparison between a node and each of its

sons separately, as in (13), it is possible to make a finer
differentiation between the nodes' performance, which results
in a context selection rule that tends to yield a shorter code
length.

We now complete the selection of the optimal context and
of Tt. Let

Si = {the deepest node w in l,lA,t (w) 2 Clog (t + l),

IwI 5 g (t)) (14)

where C is a constant, g (t) is a strictly increasing function of
t to be specified later, and IwI denotes the length of w. Define
Tt as the smallest complete supertree of Si. Note that while
Si is a subtree of '&, completion may cause some leaves of Tt
not to be in 3. The context selection rule is then defined by

S (X t) = St (15)

where st denotes the longest path xt . . . X t - k in the intersec-
tion of It and Tt. The effect of the function g (t) is two-fold.
On the one hand, it restricts the search for the node where
(14) holds, thus decreasing the probability of overestimation
(selecting a node deeper than the optimal one), but on the other
hand, it may increase the underestimation probability by not
letting the number of nodes searched grow as fast as the data
would dictate. The choice g (t) = clogt, where c = l / logd,
tums out to be a good tradeoff. Finally, the source assigns the
probability

n-1

P(X") = n p,t (X t + l l s t) (16)

to every string x", where the conditional probabilities are
given by the rule [8]

t=O

aE.4

This rule is seen to be a slight modification of Laplace's
rule of succession. Note that the probability (17) differs from
the maximum likelihood estimate (12). The reason for using
two different measures is that the code length difference (1 3)
is computed in an easier-to-analyze nonpredictive way. If a
predictive approach (using (17)) were used, the code length
for context selection would include that portion of the model
cost pertaining to the nodes in question, and we would not need
the penalty term used in (14). This predictive rule is used in
[5]. Despite the fact that the rule the algorithm employs for
context selection compares code lengths calculated from the
past strings in a two-pass nonpredictive way, the algorithm
itself assigns probabilities to strings in a predictive way.

One may wonder why the set Si itself does not qualify as a
set of leaves, which would simplify the context selection rule
to just finding the deepest node w: where

A,t(Wt+) 2 Clog(t + 1)

and Iw:l 5 g (t) hold, rather than our worrying about the
additional nodes required to complete the tree. The reason is
that some deepest node might be equivalent to an internal node
of Tt, and if we cut the tree at such an internal node we might

648 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 3, MAY 1995

lose other of its descendant leaves which are not equivalent
and which must be retained for optimality. In fact, the simpler
rule is used in practice, but even with the rule (14) and (15) it is
not necessary to rebuild the whole tree Tt for every t , which
would turn the whole scheme impractical. Instead, for each
t we need to maintain the trees Tt dynamically by marking
its nodes within It with binary flags tumed to 1. It suffices to
examine only the nodes along the path to the leaf of It defined
by xtxt-l . . . in order to find the deepest node w,* according to
(14), together with the nodes along the other paths starting at
w: in Tt-l in case w; falls within this tree. The way in which
this is actually done does not affect the main results of this
paper, and its detailed description is relegated to Appendix 111.

IV. MAIN RESULTS
Algorithm Context with the context selection rule in Section

I11 and (17) defines an information source by (16). This simply
means that given any string as an input to the algorithm,
it will deliver as the output the negative logarithm of the
probability of the string in such a manner that the axioms for
a random process (2) are satisfied. Hence, in particular, unless
so desired, the algorithm does not explicitly give the estimates
of the parameters of the optimally fitting tree machine. In
fact, the universal process defined may be applied without
our ever actually specifying the estimated tree machine. Our
main results consist of a theorem stating that the so-constructed
information source is universal in the class of finite memory
sources, and that it is asymptotically optimal in the strong
sense that it reaches the asymptotic stochastic complexity both
in the mean sense and almost surely.

Theorem I : Let T be any minimal complete tree with K
leaves defining a finite-memory source P T (X ~) with the
probability assignment (lo), where P(als) > 0 for all a E A
and s E S . Then both

1 P T (x n) K (d - 1)
- log ~ < ___ logn + O (l / n)
n P (X n) - 2n (18)

with PT-probability 1, and

where P (X n) is given by the universal source (16) for C >
2(d + 1) and the expectation ET is taken with respect to the
distribution P T (X ~) .

The proof of the theorem is given in Appendix 11. It is based
on a key lemma which states that the probability of the "error"
event Et = {xtlTt # T } associated with the context selection
rule not only tends to zero as t + CO but it tends to zero fast
enough. Specifically, we prove in Appendix I the following.

Lemma I : Let C > 2(d + 1). Then
m

t=l

Actually, for (18) to hold it is sufficient that the sum is finite
without the factors log t , but the proof of such a result is no
simpler than that of the stronger form. By the Borel-Cantelli
Lemma, this implies strong consistency.

V. AN APPLICATION: SEQUENTIAL DECISION PROBLEMS

An immediate application of the universal source is a
universal data compression system, for which we only need
to add an arithmetic encoding/decoding unit to process each
symbol zt+l in its context with the predictive distribution
(17). Theorem 1 together with [2, Theorem 11 ensures that the
resulting compression is asymptotically optimal to any desired
accuracy if we choose sufficiently large registers to carry out
the required computations.

The universal source can also be used for sequential pre-
diction, and, more generally, to make universal sequential
decisions on the future outcomes of the observed sequence. An
appropriate and, in fact, asymptotically optimal decision rule
results from Bayes' rule as applied to the universal probability.
For example, in the binary prediction case the rule may be
stated as

(21)

where P (d) is the probability assigned to zt by the universal
source. Such a scheme can be generalized to any decision
problem with a specified loss function and a decision rule
that results by minimization of the universal risk; i.e., the
expected loss, where the expectation is taken with respect to
the universal probability.

We give a brief analysis of the binary prediction problem
to illuminate the special role played by the code length as a
risk function in Theorem 1 above. Consider first the Bernoulli
source, where the tree T consists of the root with symbol
probabilities PT (a1 A) = PT (a). If U denotes the symbol which
has the larger of the two probabilities and we always predict
the next symbol as U , the fractional number of errors per
symbol is

0, i f P (d 0) > P(zt1)
X t + l = { 1, i fP(Zt0) 5 P(zt1)

~ n-1

where 6(z,2) = 0 if 2 = z, and 1, otherwise. The mean per-
symbol prediction error is then IIT = 1 - & (U) . If the symbol
that has the larger probability is not known, we may use the
predictor (21), written as 2t+l = 0, if n,t(OlA) > t /2 and
1, otherwise. Then, if l?(xn) denotes the associated fractional
number of errors made in the string xn, obtained when U in
(22) is replaced by this predictor, the mean error is given by

E T ~ I (X ") = n~ + (1 - ~ ~ T) P T (D ~ (u)) (23)

where

(x"1 xt > n/2}, if U = 0

{xnl zt 5 n/2}, if U = 1.
(24) t= l F t=l

Dn(U) =

The tail probabilities are summable, converging in a monotone
increasing manner to the limit 1/(2(1 - ~I IT) ') , evaluated in
[9], which gives

WEINBERGER et al.: A UNIVERSAL FINITE MEMORY SOURCE 64')

This inequality without the expectation holds almost surely
with respect to PT. surely.

For tree sources the total number of errors made in the string
x7' is the sum of the errors made in each context. Suppose

one, and hence (28), without the expectation, holds almost

APPENDIX I
first that we know the data-generating tree machine with all PROOF OF LEMMA 1
the conditional probabilities P(uIs) at its leaves. Then by
predicting each symbol as the one with the higher conditional
probability in its context, we get with an extension of (22) the
mean per symbol error as

The error event Et is composed of two events. One way
a string .rt can lead to a tree ?;, different from the data-
generating tree T , is by overestimation; i.e., there is a leaf s in
the set of leaves S of T and a deeper node S ~ L with length not

nT = pT(*S)nT 5 (26) exceeding g (t) in which A,t(su) 2 Clog(2 + 1). Clearly, if
S E 5

where I IT ,~ denotes the smaller of the two conditional symbol
probabilities in a context s of stationary probability PT(s) .
Suppose next that we do not know the conditional probabilities
in the contexts and instead use the majority rule predictor. An
extension of (25) to this case can be complicated. However,
to illustrate our methods it suffices to express the upper bound
in the nonexplicit form of [9, Theorem 21. If f i ~ (. P) denotes
the fractional number of prediction errors made per symbol in
the string .rn, we get the inequality

ETTIT(XT?) - IIT
. x

(27)

where each C T , ~ is a positive constant that depends on the tree
source and on .s. One can further show [9], that in a suitable
sense the right-hand side of (27) is also a lower bound on
the expected fraction of extra errors over IIT made by any
predictor. Unlike the lower bound for the code length [2] , one
cannot expect any lower bound for the prediction error to hold
simultaneously for all predictors and essentially all sources.
For example, in the class of independent binary sources the
trivial predictor jt+l = 0 has the mean per symbol error which
equals the ideal I I T for half of the sources, namely, whenever
P(0) 2 l / 2 . For the other half, however, the error will exceed
the right-hand side of (25). See [9] for more details regarding
the lower bound on prediction.

Our main result in this section is to show that even with
an unknown model structure the predictions can be done by
the rule (21) with P (x t) given by the probability of the
universal source. The resulting fraction f i (, r r l) of prediction
errors satisfies

EX- CT,S

S€S ' I

qu = {.l.tlA,t(.sU) 2 C l o g (t + 1))

then the set of the overestimation strings ma) be written as

(AI)
5€S 1 s 1 < 1 571 15 9(t)

The other way is by underestimation, which we discuss after
having dealt in Lemma 2 with the overestimation case.

Lemma 2: Let C > 2 (d + 1). Then
15

t=l

Proof Let xt belong to O:,, for some node S'U such that
wc, where c E A. Clearly, we can write 'U that

possibly empty, because the length of
s E S and 'U

way for some string
U is at least one. We then have by (I O)

logPT(:rtIsO) = Il7(:rtlS) + ~ ~ ~ , . ~ (I ~ . ~ . s) I o ~ P (u ~ s) (A3)
nt.4

where we define

z E S - { s } nt.4

Our plan is to replace the node s by the set of leaves { sv} of
a smallest complete subtree of Tt rooted at s such that s'w is
one of the leaves. Denote by S, the larger set of the leaves
consisting of S - {s} U { s !u } . This amounts to expressing
n,t(uls) in terms of the sum

I . # I1

s t S
RSw(.rtlSS) = Il,,t(alz)logP(nlz). (A61

z t S , - { w } aE.4
where K T . ~ is a positive constant. This is because even if the
maximum loss of unity is added whenever there is an error
in selecting the correct context of the data-generating tree T
with the universal source, that is, whenever z t E Et in the
notation of Lemma 1, by this lemma the mean additional loss
is uniformly bounded. Hence, a term KT,,/n gets added to the

made cannot take place infinitely often with PT-probability

If we replace in (A5) P(nls7l1) by P z t ((L (S T L I) we get an upper
bound for ~ O ~ P ~ (Z ~ ~ ~ Y ~) . And by further replacing n,t (a l s w)
by the sum

per-symbol loss. Again by the Borel-Cantelli Lemma the error 1 71,t (UltSWb)

be.4

650 IEEE TRANSACTIONS ON INFOKMATlOl\i THEORY. VOL. 41. NO. 3. MAY 19Y5

we get the inequality

logPT(:Ctl.sO) 5 R,u(.I.fIS,)

+ 71, t (a~S1Ub) log~, t (a~sw) .
nE.4 bE.4

(A71

Define next another process by the tree with the set of leaves
S,,,, obtained from S, by replacing the node s u i by its sons,
the possibly new all-zero initial context sk, and the leaf
distributions given by Qs l l (y t Isb. d) defined as

logC2su(ytI~4J.:I..t) = &,(YtlS,)

+ 71Yt ((LIS'Ulb) log P,t (U l S ' U)

nE.4 b f r

+ !riYt (a ~ s u) log P,t (a / s u)
aE.4

of course, each of its shorter suffix strings, such as cba, bu,
and a. The rule for growing the tree 3 is such that if

71,t (U]) = c11,t ((1,I'tlJ)

(I

is not smaller than ctlv~l, then surely all of the nodes a , ab,
abc, including 'UI = I L ~ C . . ., will have been created as nodes
of It. Therefore, since g (t) tends to infinity as t grows, for
sufficiently large t the strings which cause this first type of
underestimation belong to the set

(A 10) U: = {x' 1 ~ 1 , ~ (s) < d / s / . some s E Y'}.

The second type of underestimation is by (14) seen to occur
for strings in the set

= { : ~ ~ l a , t (~ ~) < Clog(t + 1).
for some intemal node z of T . all z7u E It}. (A1 1)

Define the equivalence relation :yt xt if for every a in A,
~ / , , ~ t (a l sw) = ri,t ((L I s w) and r i y t (alsu) = 7i,t (a l s t ~) . This
partitions the set into, say, /is,, equivalence classes. Let
(~ , t be the equivalence class containing xt. Then for y* E o,t,

The set of all strings that cause underestimation are then
included in the union ut = U:LJU;. By Lemma 2, to complete
the proof of Lemma 1 it suffices to show the following.

Lemma 3: Let C > 2 (d + 1). Then
A,,(su) = A,t(su), and with (13)

log Q S , , (,ut I4l; ICt 1 = f l . S , , . (?It IS, 1

+ ay* (S ' U) .

3i

= p I - (l . r ') I o g ! < x. (A 12)
t= l

+ 7lYt (f L lS ,U I) log P,l (uIs.I)
Prouc Assuming that the state probabilities are bounded

away from zero, a well-known result in the theory of large
deviations (see, for example, [2, eq. (A4)]) states that for
sufficiently large t , any s E T , and any constant c

n E .4

With (A7) and (A8) this further implies

l o g P ~ (? j ~ l . ~ 0) 5 logQ,,(!/tI~b..~.t) - A,t(S7L). (A9) ~ ' T { T L , ~ (s) < C } <

for some constants G' > 0 and y > 1. It follows that Since ()s , , (~ , t l~sb . : r t) 5 1, we get the inequality
-x

PT((T,t IS,)) 5 2-Art(su) < - (t + 1)-c ~ P T (u :) l o g l < x.
t = l

and
We consider next the event rJ i . Let T' denote the set of

nodes 111 in T for which u i b is a leaf of 7' for every b E A .
Clearly, any intemal node of T either belongs to T' or has a
descendant in 77'. Therefore. (AI 1) takes the form

U: = {.rt la,! (,lfI,(Lb) < Clog (f + I) .

P T (~ ~ : , l J . ~ , d 5 kLsu(2. +
Since O 5 ri , t (u l s ~ t u) 5 t and O 5 r ~ , ~ t (u I s , u) 5 b for a ranging
over A . there can be no more than (t+l)*" equivalence classes.
Further, there are no more than d g (t) distinct sequences su,
which for for some t i i E T'. and all w u b E 3).

log t
y(t) = - log d Note that ,U may be the null string A. Thus with -

and C > 2 (d + 1) implies

for the positive number F = C - 2 (d + 1). This completes the
proof of Lemma 2.

We now turn to the underestimation case. Underestimation
can take place in two ways. First, it may happen that the string
: I : ~ is such that the set of searched nodes does not even include
the entire tree 7'. This will happen if either the length of the
deepest leaf in '1' exceeds y (t) or if the string :ct is such that
the set of the created nodes It does not include 7'. Further,
whenever a string tfi = . . . (: h L occurs in the string .E* so does,

U; & { . I ~ t ~ a z t (, u m) < dClog(t + 1)
for some 'tu E T' and every 7 , } .

To upper-bound the probability of U: we use techniques from
the theory of large deviations as applied to Markov chains;
in particular, a well-known lemma due to Csiszir, Cover, and
Choi [I O , Lemma 2(a)]. Since not every minimal complete
tree ?' admits an FSM implementation we must first define
an FSMX source equivalent to the data-generating source. Let

WEINBERGER er U/ . : A UNIVERSAL FINITE MEMORY SOURCE 65 1

R denote the smallest complete supertree of T that defines
an FSMX source, and let L denote the set of its leaves. For
every leaf z E T , assign the conditional probability P(.lz) to
each extended node zu, where zu E L. Taking the all-zero
initial state s'o E L, we obtain an FSMX source P ~ (X ~ l d 0)

which is equivalent with P T (X ~ ~ I ~ S ~) . Consider the subtree of
R rooted at w and defined by the descendants of w E T'.
Denote the set of leaves of this subtree by L(w) and the set
of its internal nodes, including the root w, by R(w) . Clearly,
we can assume that R (w) is a subtree of 3, for otherwise we
could proceed as with U:. With these definitions we have

U; C {d S , ~ (Z) < IR(w)ldClog(t+ 1).
zER(w)

for some w E T'} .

Now, define

O,t(v,)= S z t (z) .

Finally, let I? denote the set of distributions over L x L defined
by Q (. ; .) E r iff

Note that F (Q) 2 0 for every distribution Q. By (A13) and
the definition of it follows that xt E U:,,€ if and only if
P,t(. . .) E r or, equivalently

PR(U:,~IS'~) = p R { F , t (. . E rlsb}.
Denote by I'o the set of distributions belonging to the closure
of I? (relative to the set of all distributions over L x L) and for
which the two marginals are identical. By the above mentioned
large deviations lemma we then obtain

1
t-co t

lirrisup - log pR{PXt (.. .) E rl&} I - D

where zER(zu)

It can be readily verified that

Clearly, it suffices to show that for every w E T' and some
F (W) > 0, the set

U:,,e E { x t E A t I t - l R z t (~) I €(tu)}
satisfies

oc

c P R (u : EISb)logt < x. (A 14)

We prove (A14) using Csiszir, Cover, and Choi's lemma,
which requires that the error event be given in terms of a
set of probability distributions such that it includes a certain
empirical distribution derived from d E U:,,. For each s E L
let S (U) denote the leaf in L defined by the longest path as in
R. In other words, since R admits an FSMX implementation
we may view s as a state of an FSM and s (a) is the next state
into which the symbol a takes s according to (5) . Consider the
two-dimensional empirical distribution defined over L x L

t= l

t-ln,t(uls), i f z = s (a) . somea E A
otherwise. P,* (s. 2)

Note that

In general, the marginals of this distribution are not equal.
For a distribution Q(.: .) over L x L, let Q(.) denote its left
marginal. Define

Further let
C Q (z . s)

, s E L . w E T'. Q (z) # 0.
z E L (w)

Q(.slw) =
Z E L (W) c Q(4 Z € L (u ;)

(Here 0 log 0 = 0 log 1 = 0 and log $ = x. if h > 0). Clearly,
P(z ls) is unambiguously determined by P(a1s) for U E A.
Note that, by the definition of r, D is independent o f t , and in
order to prove (A14) it suffices to show that there exists 6 > 0
such that if t (w) < 6 then D # 0. Now, by the irreducibility
of the Markov chain defining the source P R (X ~) , it can be
readily seen that the unique distribution Qo(.. .) over L x L
with two identical marginals for which D(QoIIP~) = 0 is

Q o (s , z) = P i (s) x P(z1s). s . z E L

where P i (.) denotes the (unique) stationary distribution de-
fined by r(./.). Now, define b E t(Qo). Clearly, if 6 = 0 then
the distribution Qo(. l z) = P(. lz) must be the same for every
z E L(?u). Hence b > 0, for otherwise the set of leaves wb
of T , b E A, could be replaced by U! to obtain an equivalent
source, thus contradicting the minimality of T . Therefore, with
E(W) < 6, it follows that Qo(.. .) is not in ro. Consequently,
D # 0, and the proof is complete.

APPENDIX I1
PROOF OF THEOREM 1

We prove the theorem for the probability assignment (10)
with the initial all-zero context so. By Lemma 1 and the
Borel-Cantelli Lemma, the set C of infinite d-ary sequences
for which there exists an integer N (z) such that for every
t > N (z) , Tt = T , has &-probability 1. Let k,t(T) denote
the empirical conditional entropy of a sequence zt with respect
to T , namely

652 IEEE TRANSACTIONS O N INFOKMATION THEORY. VOL. 31. NO 3. MAY 1995

Had the universal probability (16) and (17) been computed
using the true (unknown) tree T instead of Tt, we would have
obtained for every xt, [SI

K(d - 1)
-tP1 log P (d) 5 fi,f (T) + 7 logt + 0 (t - l) .

Therefore, for every z E C and every t > N (z) we have

N(X) -t-l l o g P (d) 5 ~ log (2 lv (x) + d) + Hzt(T)
t
K (d - 1) +- logt + 0 (t - l) . (A15) 2t

K(d - 1)
-~ logt] < x}. (A16)

2
By (A15) and (A16), C is a subset of B and, consequently,
&(B) = 1. Furthermore, by the asymptotic equipartition
property

t-’ log P T (z ~) + f i z t (T) + 0

with &-probability 1, which completes the proof of (18).

in [6, Theorem 4(a)].
The inequality (19) follows from Lemma 1 by the arguments

APPENDIX I11

In this appendix we describe an efficient updating of the
trees Tt. Actually, by examining the nodes stated at the end
of Section 111 only, we do not maintain the trees T,, but
rather certain slightly bigger trees, say Tt. The nodes of Tt
and Tt along the current path xt.c-l . . . are identical, and
thus the difference between them does not affect the context
selection. At the nodes w along the other paths no updating of
It takes place so A,t (w) = A,t-, (w) , but it may happen that
a deepest node IU* where A,t-, (w *) 2 C log t was true ceases
to satisfy this relation when t - 1 is replaced by t . Hence, such
a node may no longer belong to Tt, and if we leave it in Tt
(to avoid visiting too many nodes) we get Tt 2 Tt. On the
other hand, at the nodes outside of Tt-l, A,t-l(w) < C l o g t
is true, and it remains to hold when t - 1 is replaced by t
unless A,t-~(w) gets updated, which can take place only at
the nodes along the current path and their offsprings.

In order to update Tt-l we proceed as follows. Having
found a$, two cases can occur: Either wZ; is in the tree Tt-l,

or it is deeper than the corresponding leaf, say z t - l . In the
latter case, st = w2, and the algorithm extends Tt-l to Tt by
flipping the flag to 1 at each node along the path between the
leaf zt-l of Tt-l and 7.: as well as their son nodes, except
those of ,w;, which is a leaf. The former case, where , I ~ I T falls
within Tt-l is a bit more involved. If ‘iu; is a leaf, clearly
st = ..I;. In the remaining case, where ,U$+ is an internal node,
the question is whether or not the tree ?’t-l can be pruned
at this node and hence making it a leaf. To find out we must
check if any path in Tt-l, starting at ‘w;, has a node where

holds and whose length does not exceed ! I (/) , of course. If
such paths exist, we must retain them in Ft, and we set st as
the son node of w; , defined by the current path. In addition,
we prune the tree TtP1 at all the son nodes of w; which were
not retained by the path check just made.

ACKNOWLEDGMENT

The authors gratefully acknowledge P. Algoet for his sug-
gestions on the prediction results.

REFERENCES

[I] J. Rissanen, “A universal data compression system,” IEEE Trans.
Inform. Theor?;, vol. IT-29, no. 5 , pp. 656664, 1983.

121 -, “Complexity of strings in the class of Markov sources,” IEEE
Trans. Inform. Theon , vol. IT-32. no. 4. pp. 526-532, 1986.

[3] -, “Universal coding, information, prediction, and estimation,”
IEEE Trans. Inform. Theon , vol. IT-30, no. 4, pp. 629-636, 1984.

[4] -, “Noise separation and MDL modeling of chaotic processes.” in
Proc. Workshop ”From Srarisrical Ph.uics IO Srutisricul Inference and
Back” (Cargese, Corsica, Aug. 31-Sept. 12, 1992).

[5) G. Furlan, “Contribution a I‘Ctude er au developpement d’algorithmes
de traitement du signal en compression de donnCes et d’images,” Ph.D.
dissertation, I’UniversitC de Nice, Sophia Antipolis, France (in French).
1990.

[6] M.J. Weinberger, A. Lempel, and J . Ziv, “A sequential algorithm for
the universal coding of finite-memory sources,” IEEE Trans. Infiwm.
Theor?;, vol. IT-38, no. 3, pp. 1002-1014, 1992.

[7] M.J. Weinberger, N. Merhav, and M. Feder, “Optimal sequential proba-
bility assignment for individual sequences,” IEEE Trans. Infimn. Tlleot:\.
vol. IT-40, no. 2, pp. 386396, 1994.

[8] R.E. Krichevskii and V.K. Trofimov, “The performance of universal
encoding,” IEEE Trans. Inform. Theocy, vol. IT-27, no. 2. pp. 199--207.
1981.

[9] N. Merhav, M. Feder, and M. Gutman, “Some properties of sequential
predictors for binary Markov sources,” IEEE Trans. Inform. Thror:,
vol. 39, no. 3, pp. 887-892, 1993.

[IO] 1. CsiszBr, T.M. Cover, and B. Choi. “Conditional limit theorems under
Markov conditioning,” IEEE Truns. 1rifiv-m. Theory, vol. IT-33. no. 6.
pp. 788-801, 1987.

