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Abs&uct- In this paper an irreducible parameterization for 
a finite memory source is constructed in the form of a tree 
machine. A universal information source for the set of finite 
memory sources is constructed by a predictive modification of an 
earlier studied algorithm-Context. It is shown that this universal 
source incorporates any minimal data-generating tree machine 
in an asymptotically optimal manner in the following sense: 
the negative logarithm of the probability it assigns to any long 
typical sequence, generated by any tree machine, approaches that 
assigned by the tree machine at the best possible rate. 

Index Terms-Universal coding, Context algorithm, finite mem- 
ory sources, sequential decision, stochastic complexity, prediction. 

I. INTRODUCTION 

INITE memory sources are distinguished by the property F that the conditional probabilities of a symbol, given all 
the past observations, actually depend only on a fixed smallest 
number k of contiguous past observations. Hence, technically, 
such sources are Markovian, the number k defining the order of 
the process. However, when trying to fit Markov models to the 
data by estimating the conditional probabilities at the dk states, 
where d is the alphabet size, a number of difficulties arise. 
First, we have to deal with the familiar explosive increase in 
the number of states and the fitted parameters if we increase 
the order of the Markov model to find the best fit. Secondly, 
even when the order k is minimal, the probability parameters 
defining the process are not necessarily irreducible, and hence 
they cannot be efficiently estimated. This is because there 
are in general equivalent states having identical conditional 
probabilities. Again, if we attempt to remove the redundant 
parameters by “lumping” together the equivalent states, we 
may amve at the disturbing situation that the result is not a 
finite state machine implementation of the process, let alone 
one of a Markov type. 

There is, however, a different but equally simple implemen- 
tation of the process, which is described by an irreducible set 
of probability parameters. We call it a “tree source,” and define 
it formally in Section I1 after a discussion of finite memory 
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sources. In an incomplete form, such a tree was utilized in 
the data compression algorithm Context, introduced in [ 11 and 
modified and generalized in [2] and [ 5 ] .  This algorithm has 
two main stages, a tree that grows with a string for gathering 
the conditional symbol statistics, and a rule for selecting the 
optimal context on which to condition each observed symbol. 
Inspired by the Context selection rule in [ 5 ]  we describe in 
this paper a sequential modeling scheme based on a predictive 
rule, which overcomes the state explosion problem and is 
both simple to implement and to analyze. Most importantly, 
as it is fully sequential it actually defines in a practical 
manner a universal finite memory source, which incorporates 
asymptotically optimal estimation of the best minimal data 
generating tree source that fits the data. 

Let us further elaborate on the concept of “universal source.” 
The idea of a universal data compression algorithm goes back 
to Kolmogorov. Here we go a step further and introduce the 
notion of a universal information source which is close, in an 
asymptotic sense, to any source in the class with respect to 
which it is universal. It is meant to replace any source in the 
class wherever models are needed; we discuss some of the 
applications in the last section. Another more general context- 
based universal random process for time series and chaotic 
processes was discussed in [4]. The sense of universality in 
a model is akin to a universal Turing machine which can 
imitate any special-purpose machine; i.e., a program. Since 
the particular tree machines are here given or presented to us 
only through the data they generate, the universal information 
source imitates each such machine exactly only in the limit. 
However, it assigns to every long typical string, generated 
by any Markov source, a probability which is almost as 
large as the probability of the string assigned by the data 
generating source. This means that for long typical strings, 
the model provided by the universal source behaves like 
the “true” system for all tasks we wish to use the model 
for, such as coding, prediction, and decision in general. In 
particular, the universal source with arithmetic coding provides 
a universal data compression algorithm such that the mean 
per symbol code length not only approaches the entropy of 
any data generating source but does it at an optimal rate, 
P I .  

More specifically, let P(x“) and PT(zn )  denote the prob- 
abilities assigned to the string xn by the universal source and 
by any data generating finite-memory source with K sets of 
equivalent states, respectively. Using techniques developed in 
[6]  we prove a theorem stating a strong asymptotic optimality 
of the universal source both in the almost sure sense and in 
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the mean, namely, 0 , 1 , .  . . , each P, defined on the set A" of all strings zn = 
z1 . . . z, of length n, such that the marginality condition 

1 PT(X,) K ( d -  1) -log- < ~ logn + 0 (l/n).  
n P(X , )  - 2n P,+l(znz) = Pn(xG") (2) (1) 

The set of the tree sources satisfies also the conditions in 
[2], which imply that the strict reverse inequality in (1) holds 
for any source P ( X n ) ,  however arrived at, and all T ,  with 
its parameters in a compact K(d - 1)-dimensional set with 
nonempty interior, except in a subset of measure zero. The 
right-hand side, then, represents the asymptotically optimal 
model complexity in terms of the code length needed to encode 
the model which leads to the asymptotically shortest code 
length for the data. This means that regardless of which 
estimation method one employs it is impossible, at least 
asymptotically, to "learn" the data-generating mechanism, the 
tree machine, better than is done by using the universal 
algorithm Context. In [6] a variant of algorithm Context 
was studied in which the context selection was done using 
hypothesis testing, modified by data-length-dependent thresh- 
olds (the right-hand side of (1)) given in the theory of 

x E A  

holds for all n; here znx = x1 . ..z,z, and P0(zo) = 1, 
where zo is the empty string, also written as A. The additional 
requirement of stationarity may be expressed by the symmetric 
condition 

P,+l(zzn) = P,(zn) (3) 
x E A  

for all n. As a rule, we write Pn(zn) = P(z") by omitting 
the subindex. Note that (2) and (3) define a consistent and 
stationary measure P. 

In applications the probability function P(x") must be such 
that it can be easily constructed. One of the familiar ways to 
do it is in terms of the conditional probability function 

P(zl5:") = P(z"z) /P(z")  
stochastic complexity. The resulting algorithm was shown to 
be asymptotically optimal for the class of FSMX sources [2] 
defined in Section 11, which is a subclass of the tree sources. 

which in view of (2) is well-defined. Then, it is required to 
satisfy the condition 

However, unlike our results here, the implementation of the 
context selection rule becomes impractical in case an upper 
bound on the length of the contexts is not available, a case 
that needs to be covered for a complete universality. 

The universal source presented in this paper is based on the 
explicit sequential estimation of a finite memory model, which 
is used at each time instant to define the probability distribution 
assigned to the next symbol. This plug-in approach not only 
assigns to the data a probability that is close to that assigned 
by any finite memory source, but it also tracks the best model 
that fits the data. It generates a random process whether or 
not the data have been generated by a finite memory source, 
and ( 1  ) holds for long typical sequences generated by such 
sources. As discussed in [7], it turns out that (1) does not 
hold for every sequence. An alternative approach, in which a 
(Bayesian) "mixture" of all models in a class is used to define 
a universal random process, is investigated in [7]. Although 
the "mixture" approach lacks the explicit model estimation, 
it is shown in [7] that the probability it assigns satisfies (1) 
pointwise, i.e., for every sequence. A practical implementation 
of this approach for tree sources, however, requires an upper 
bound on the length of the contexts as in [6]. 

The remainder of this paper is organized as follows. In 
Section 11, we discuss finite-memory sources and formally 
define the tree sources. In Section 111, the algorithm Context is 
presented as a universal source for the finite memory class. The 
main results, which establish the universality of the source, are 
stated in Section IV and proved in Appendixes I and 11. Finally, 
applications of the universal source beyond compression are 
discussed in Section V. 

P(51zGn) = P(zls(zn))  (4) 

for all z E A, where s ( P )  is a function with finite range S,  a 
fixed (with respect to n)  state space. One way of specifying the 
function s(zG") is by a finite state machine (FSM) as follows: 
First, .(A) = SO selects an initial state. Then, recursively 

s(zn+l) = f(s(z"),z,+1) (5 )  

where f : S x A H S is the state transition map of the 
machine. The source is then defined by the K x (d  - 1) 
conditional probabilities and the function f (s, z) together 
with the initial state, where K is the number of states. Such 
sources are called finite-state-machine-generated sources or 
FSM sources for short. 

However, fitting FSM sources to data is still a complex 
matter, especially when one wants to search through machines 
with different numbers of states, because of the large number 
of possible state transition functions to be explored. There 
is an important subclass of sources, which we call Finite 
Memory or Tree sources, which can be estimated much more 
conveniently using a modification of the algorithm Context, 
[ l] ,  [2], and [ 5 ] ,  described below. Although strictly speaking 
these random processes are still Markovian, they cannot be 
efficiently estimated by fitting a Markov machine to the data. 
The distinguishing property of a Markov process is that the 
function s ( z n )  not only has a finite fixed range S and satisfies 
(5 )  but it also is of the form 

S(Zc") = 5 ,  ' .  ' Z,-k+l (6) 

where k is the order of the process, and the reversed string 
s(xc") for n 2 IC is a state.' 

11. FINITE -MEMORY SOURCES 

is defined by a family of probability measures Pn(zn), n = 

' Here, we distinguish between a Markov source, namely a special case of 
FSM source satisfying (6).  and a Markov chain. In fact, any FSM source is a An information Source Over a finite A Of 

Markov chain on S. 
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In view of the crucial requirement (4) it is clear that the 
right-hand side string in (6) should be as short as possible. 
Indeed, if for some i ,  0 5 z < k ,  some string zn-;+l . . . zn,  
and all strings z,-k+l . . . .L,-, 

P(z/z,-,+1 . ’ ‘ . E , )  = P ( Z 1 5 , , _ k + l  . ’ .  z,) 

for all .E E A,  then the set of states defined by the same 
suffix -6,-,+1. . . E ,  would be equivalent and could be lumped 
together and represented by the suffix without any change in 
the process. The problem is that the resulting set of the shortest 
strings, which now need not be of the same length, may not 
admit an FSM description let alone a Markov one to generate 
the process. (Such an example is given in the last paragraph of 
this section.) On the other hand, if the states are not collapsed, 
the estimation of the distribution P(ZIL,-,+I . . . zn )  repeat- 
edly in each of the equivalent states; i.e., from the symbol 
occurrences following the longer strings . c , -k+l  . . .z,, would 
involve estimation of redundant parameters. These would then 
have to be estimated from fewer symbol occurrences than in 
the case where the same distribution is estimated from the 
symbol occurrences following the shorter string z,-,+1. . . xn, 
resulting in suboptimal convergence. 

These intuitive ideas can be formalized in terms of the 
model complexity, as the smallest number of bits needed to 
encode the parameters, which permits a measurement of the 
effect of the parameter redundancy. The model complexity 
restricts in a fundamental manner all the tasks the models 
are used for, often prediction, and it is important to keep it 
minimal, which can be achieved only when the parameters 
are nonredundant. To summarize, an efficient estimation of 
the conditional distributions (4) can only be done by count- 
ing the symbol occurrences following the shortest possible 
strings where (4) and (6) hold, which amounts to pooling 
the symbol occurrences at the redundant states. However, the 
set of the shortest strings satisfying (4) may admit no FSM 
implementation. 

Fortunately, there is another type of “machine” that can 
do the implementation of a Markov source with an equally 
simple tree architecture, to be described next. Let (4) hold for 
a function s(z“) of the form 

S ( J ” )  = ’ZO”(,-k+l) (7) 

for some k 2 0, not necessarily the same for all strings, where 
a V 0 denotes the larger of the two numbers; the case IC = 0 
is interpreted as defining the empty string X = 50. Hence, for 
71 5 k ,  s(L”) = 5 , .  . . .LO, so that the function is defined for 
strings of every length, even for n = 0. Any suffix of zn,  
written in reverse order as znzn-l . . ., is called a context in 
which the “next” symbol zr1+1 occurs. The “terminal contexts” 
(7) (the shortest contexts satisfying (4)) act as states, but they 
do not necessarily satisfy (5). And, as we argued above, in 
fitting models it is the set of terminal contexts rather than 
the states of an FSM that are important. The difference is 
particularly dramatic in raster-scan images, where the value 
of a pixel is influenced mostly by the context defined by its 
few nearby past pixels. While the number of states of an FSM 
that would include these relevant pixels would be enormous, 

including all the pixels in between as well, a state space (7) can 
be implemented by a tree structure after a suitable reordering 
of the data scanned prior to x,+~. With an FSM, it would be 
completely hopeless and useless to fit probability parameters 
to such a huge number of states. 

Consider a d-ary tree, where the branches are labeled by the 
symbols in the alphabet. Each context defines a node in the 
tree reached by the path starting at the root with the branch :E, ,  

followed by the branch znPl, and so on. The range S defines a 
complete’ subtree T with the set of leaves denoted S ( T )  = S.  
Note that the use of the same notation for both the set of 
leaves of T and the set of states of an FSM emphasizes their 
similarity, but it is not required that the tree model admit an 
FSM implementation, as given by (5). To specify a stationary 
source we need in addition a set of probability distributions 
{ P ( z ( s )  : s E S } ,  P(als)  > 0 for all a E A and s E S .  
Much as a prefix code permits decoding of codewords without 
commas, the tree T permits finding a distinguished context (7) 
for each symbol zt in the string zn and an implementation of 
the probability P T ( z ~ )  as 

n-1 

PT(Z,) = n P(”t+l Is(.”)) (8) 

for any string zn. To compute PT(z”) it remains to define 
the conditional probabilities in the right-hand side of (8) for 
the very first values of t ,  for which the contexts defined 
by (7) may not be leaves. One way to set these initial 
conditions is by use of a stationarity constraint. In this case, 
the conditional distributions at the leaves induce a unique 
conditional distribution P(z lw)  for each internal node w as 
follows. First, we extend the tree T to the perfectly balanced’ 
complete supertree of T having the same height as T ,  and 
assign the conditional distribution P(z1s) to each leaf S ~ L  

of the extended tree. Each such leaf defines a state of a 
Markov process. These conditional distributions, which define 
the state transition probabilities, are positive and, therefore, 
the corresponding chain is irreducible. Moreover, condition 
(6) clearly implies aperiodicity and hence ergodicity. Thus 
there exists a unique stationary distribution over the states. 
Next, this distribution defines, in turn, a unique probability 
of each node by the requirement ( 3 )  and by (2) a conditional 
distribution at each node of the tree T.  For example, take 
S = {1.01,000~001}. as the (prefix) set of states (reversed 
strings). To find the conditional distribution in the internal 
node 0, we have first P(OI0) = P(OO)/P(O) and then 

t=O 

P(OO0) + P ( O O 1 )  
P(000) + P(001) + P(010) + P ( 0 l l ) ‘  

P(OI0) = 

Finally, the stationary probabilities of the triplets are obtained 
by extending S to a third-order Markov source and finding its 
invariant distribution. 

Although the probability PT(z,) is well-defined, it will 
simplify later analysis if we let the machine define a slightly 

2 A  ti-ary tree is said to be complete if each node either is a leaf or has 

3 A  complete tree is said to be perfectly balanced if all the paths from the 
exactly d offspring. 

root to the leaves have the same length. 
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different probability function by changing the initial condi- 
tions. Let SO denote the all-zero leaf in the tree T ,  which 
plays the same role as an initial state in finite-state machines, 
and let 7 be the maximum depth of the tree T.  We then put 

n - 1  

(9) 
t=O 

where O‘zt denotes the string xt padded with 7 initial zeros. 
This guarantees that the state is well-defined for every t > 0, 
which might not be the case otherwise. Let S denote the string 
s written in reverse. Then, (9) can further be written in terms 
of sufficient statistics as 

s E S  a E A  

where n,(als) denotes the number of times the string %a 
occurs as a substring in OIslz, less the number of times it 
occurs as a substring in the string of zeros 01’1 given by the 
length Is1 of s. This definition of the counts insures that for 
all a E A and all strings z 

U 

where sw runs through all the leaves of any complete subtree 
rooted at s. Because of the initial edge effect this would not 
hold exactly if n,(als) were defined to be the number of times 
Sa occurs in x. 

The tree T is called minimal, if for every node w in T 
with all its successors wv as leaves, there exist a,  b, and c in 
A satisfying P(a1wb) # P(a1wc). Clearly, if for some such 
node w the distributions P(.lwb) are equal for all b, we could 
lump the successors into w and have a smaller complete tree 
representing the same process. If a minimal tree T admits an 
FSM implementation, (3, the source is also called an FSMX 
(generated) source. Not every minimal tree admits such an 
implementation. Indeed, if s(z”) = z, . . . X n - k ,  then ( 5 )  can 
hold only if the next state s ( z n f l )  is uniquely determined 
by the string X n - k  . ‘ . zn ,  zn+l and hence its length cannot 
exceed that of s(z”) by more than one symbol, while no such 
restriction need hold for the contexts or the lengths of the 
leaves of a complete tree. The following simple example was 
given in [6]: Take S = {1,00,010,011}, where the strings 
read in reverse are supposed to be the states. What would be 
the state following an emission of “0” at state l?  Clearly, there 
is no such state satisfying ( 5 ) ,  because the only state of length 
two is 00 , which cannot be reached from state 1 .  By contrast, 
with a tree model, the tree T with S as the set of leaves will 
parse from the string . . . l o  as long a context as needed to reach 
a leaf, either 011 if the string is . . . 110, or 010 if the string is 
. . . O l O .  The exceptions, of course, are strings shorter than the 
path to the leaves, for which the tree will assign the probability 
by the intemal nodes as indicated prior to (8). In conclusion, 
we mention that a minimal tree guarantees that no node w, all 
of whose successors are leaves, can be equivalent to all these 
successors, which, consequently, cannot be replaced by the 
father node w. Notice that even in a minimal tree there may 
well be other sets of equivalent leaves, not necessarily siblings, 

having the same associated conditional probabilities. These 
equivalent nodes could, in principle, be lumped together thus 
reducing the number of parameters of the process. However, 
such a reduced parameterization may no longer admit a simple 
tree implementation nor a practical construction of a universal 
source, and we do not discuss such more general parametric 
representations of Markov sources in this paper. 

111. A UNIVERSAL FINITE-MEMORY SOURCE 

The algorithm Context, introduced in [ l ]  and improved in 
[2] and [ 5 ] ,  provides a practical means to estimate Markov 
sources in the tree form. The algorithm has two stages, the first 
for growing a large tree and the second for selecting from that 
tree a distinguished context to define the function s (z t )  and 
hence the complete trees Tt . The algorithm grows the contexts 
and updates the occurrence counts by the following rules: 

Start with the root with its symbol counts all zero. 
Recursively, having constructed the tree (which may 
be incomplete) from xt,  read the symbol xt+l. Climb 
the tree according to the path defined by ztzt-l  . . ., and 
increment the count of symbol zt+l by one for every 
node visited until the deepest node, say xt.. . zt-j+l, 
is reached. 
If the last updated count becomes at least 2, create a 
new node xt . . . xt-j ,  and initialize its symbol counts to 
zero, except for the symbol zt+l, whose count is set to 
1 .  This completes the construction of % + I .  

The goal of this stage is to accumulate all the relevant 
contexts and the associated symbol statistics in a practical 
way as the length of the string grows. The tree will grow 
only in directions where repeated symbol occurrences take 
place, and the counts of all the symbols in all the contexts that 
have occurred are gathered, except a few early occurrences 
prior to the creation of the corresponding node. We could 
even gather these missed ones by backtracking and updating 
the counts, including those resulting from the padded initial 
zeros, to obtain nz(a ls )  as defined after (10). Mainly for the 
simplicity in notation this is actually the case we analyze. 
The main results, however, are valid even for the easier to 
implement algorithm where the tree is grown by the given 
rules 1 )  and 2). 

While letting the tree grow the algorithm also selects a 
certain distinguished context for each symbol zt+l from the 
growing source string zt  = z1 . . . z t .  These contexts together 
with the earlier ones are used to define the set of leaves St 
of a complete tree Tt. There are several variants of the rule 
for the “optimal” context selection. The rules in [l] and [2] 
are based upon the application of the MDL principle or the 
calculation of the stochastic complexity. They compare, in 
effect, the difference between the empirical entropy of a father 
node and the sum of the entropies of all its sons, against their 
model cost difference, and makes the decision in favor of the 
winner. As illustrated in [6] with an example, this rule does not 
permit a consistent estimation of the data-generating source 
in all the cases of interest. As a remedy, a quite different 
context selection rule was proposed, one based upon the ideas 
of hypothesis testing. In this an upper bound m on the model 
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order is assumed to be known. Then the empirical entropy 
calculated with each candidate model is compared with that 
obtained when its contexts are extended to the length m, 
and the shortest context for which the difference is below 
a threshold t is chosen. A fixed threshold would not give 
consistent context estimates, which is why the threshold is 
required to shrink to zero at the same rate as the per-symbol 
model complexity in the theory of stochastic complexity. In 
the more general case where no maximum value for the model 
order is assumed, the numbers 711 are increased with the length 
of the processed sequence. Although the resulting algorithm 
becomes prohibitively complex, since the estimation requires 
sums of an exponentially growing number of terms, the rule 
so modified was shown to provide a consistent estimation 
of any FSMX-generated source as well as to achieve the 
asymptotically optimal mean code length. 

In [5] the original context selection rules in [ 11 and [2] were 
modified in a particularly efficient and easy to implement way. 
The algorithm was applied to a number of data compression 
problems with impressive results. For example, in randomly 
selected text files the per-symbol code length was typically 
15-20% below the length obtained with a version of the 
Ziv-Lempel algorithm. The analysis of the algorithm with 
the given rule, however, turns out to be difficult, and in 
the following we study an easier-to-analyze modified version 
which still admits a reasonably simple implementation. To 
state the rule define 

unless 

in which case Pz(als)  = 0. We remind the reader that n,(als) 
denotes the number of times the string sa occurs as a substring 
in 01'1x less the number of times it occurs in 01'1. For each 
node sb, b E A,  in a tree define 

This is extended to the root node by &(A) = 02. In words, 
A,(sb) denotes the (ideal) code length difference when the 
symbol occurrences in context sb have been encoded with 
the statistics gathered at the father node s and with its own 
statistics. It is clearly nonnegative. This differs from the cross 
entropy used in [l] ,  [2], and [6], written here not-per symbol 
occurrence but as follows: 

Afiz(s) = 71,(s)f iz(s)  - n,(sb)fiz(sb) 
bEA 

where 

H,(s) = - 
aE.4 

The cross entropy is also nonnegative. By permitting the 
code length comparison between a node and each of its 

sons separately, as in (13), it is possible to make a finer 
differentiation between the nodes' performance, which results 
in a context selection rule that tends to yield a shorter code 
length. 

We now complete the selection of the optimal context and 
of Tt. Let 

Si = {the deepest node w in l,lA,t ( w )  2 Clog ( t  + l), 

IwI 5 g ( t ) )  (14) 

where C is a constant, g ( t )  is a strictly increasing function of 
t to be specified later, and IwI denotes the length of w. Define 
Tt as the smallest complete supertree of Si. Note that while 
Si is a subtree of '&, completion may cause some leaves of Tt 
not to be in 3. The context selection rule is then defined by 

S ( X t )  = St (15) 

where st denotes the longest path xt . . . X t - k  in the intersec- 
tion of It and Tt. The effect of the function g ( t )  is two-fold. 
On the one hand, it restricts the search for the node where 
( 14) holds, thus decreasing the probability of overestimation 
(selecting a node deeper than the optimal one), but on the other 
hand, it may increase the underestimation probability by not 
letting the number of nodes searched grow as fast as the data 
would dictate. The choice g ( t )  = clogt,  where c = l / logd, 
tums out to be a good tradeoff. Finally, the source assigns the 
probability 

n-1 

P(X") = n p,t ( X t + l l s t )  (16) 

to every string x", where the conditional probabilities are 
given by the rule [8] 

t=O 

aE.4 

This rule is seen to be a slight modification of Laplace's 
rule of succession. Note that the probability (17) differs from 
the maximum likelihood estimate (12). The reason for using 
two different measures is that the code length difference (1 3) 
is computed in an easier-to-analyze nonpredictive way. If a 
predictive approach (using (17)) were used, the code length 
for context selection would include that portion of the model 
cost pertaining to the nodes in question, and we would not need 
the penalty term used in (14). This predictive rule is used in 
[5]. Despite the fact that the rule the algorithm employs for 
context selection compares code lengths calculated from the 
past strings in a two-pass nonpredictive way, the algorithm 
itself assigns probabilities to strings in a predictive way. 

One may wonder why the set Si itself does not qualify as a 
set of leaves, which would simplify the context selection rule 
to just finding the deepest node w: where 

A,t(Wt+) 2 Clog( t  + 1) 

and Iw:l 5 g ( t )  hold, rather than our worrying about the 
additional nodes required to complete the tree. The reason is 
that some deepest node might be equivalent to an internal node 
of Tt, and if we cut the tree at such an internal node we might 
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lose other of its descendant leaves which are not equivalent 
and which must be retained for optimality. In fact, the simpler 
rule is used in practice, but even with the rule (14) and (15) it is 
not necessary to rebuild the whole tree Tt for every t ,  which 
would turn the whole scheme impractical. Instead, for each 
t we need to maintain the trees Tt dynamically by marking 
its nodes within It with binary flags tumed to 1. It suffices to 
examine only the nodes along the path to the leaf of It defined 
by xtxt-l  . . . in order to find the deepest node w,* according to 
(14), together with the nodes along the other paths starting at 
w: in Tt-l in case w; falls within this tree. The way in which 
this is actually done does not affect the main results of this 
paper, and its detailed description is relegated to Appendix 111. 

IV. MAIN RESULTS 
Algorithm Context with the context selection rule in Section 

I11 and (17) defines an information source by (16). This simply 
means that given any string as an input to the algorithm, 
it will deliver as the output the negative logarithm of the 
probability of the string in such a manner that the axioms for 
a random process (2) are satisfied. Hence, in particular, unless 
so desired, the algorithm does not explicitly give the estimates 
of the parameters of the optimally fitting tree machine. In 
fact, the universal process defined may be applied without 
our ever actually specifying the estimated tree machine. Our 
main results consist of a theorem stating that the so-constructed 
information source is universal in the class of finite memory 
sources, and that it is asymptotically optimal in the strong 
sense that it reaches the asymptotic stochastic complexity both 
in the mean sense and almost surely. 

Theorem I :  Let T be any minimal complete tree with K 
leaves defining a finite-memory source P T ( X ~ )  with the 
probability assignment (lo), where P(als)  > 0 for all a E A 
and s E S .  Then both 

1 P T ( x n )  K ( d - 1 )  
- log ~ < ___ logn + O ( l / n )  
n P ( X n )  - 2n (18) 

with PT-probability 1, and 

where P ( X n )  is given by the universal source (16) for C > 
2(d + 1) and the expectation ET is taken with respect to the 
distribution P T ( X ~ ) .  

The proof of the theorem is given in Appendix 11. It is based 
on a key lemma which states that the probability of the "error" 
event Et  = {xtlTt # T }  associated with the context selection 
rule not only tends to zero as t + CO but it tends to zero fast 
enough. Specifically, we prove in Appendix I the following. 

Lemma I :  Let C > 2(d + 1). Then 
m 

t=l 

Actually, for (18) to hold it is sufficient that the sum is finite 
without the factors log t ,  but the proof of such a result is no 
simpler than that of the stronger form. By the Borel-Cantelli 
Lemma, this implies strong consistency. 

V. AN APPLICATION: SEQUENTIAL DECISION PROBLEMS 

An immediate application of the universal source is a 
universal data compression system, for which we only need 
to add an arithmetic encoding/decoding unit to process each 
symbol zt+l in its context with the predictive distribution 
(17). Theorem 1 together with [2, Theorem 11 ensures that the 
resulting compression is asymptotically optimal to any desired 
accuracy if we choose sufficiently large registers to carry out 
the required computations. 

The universal source can also be used for sequential pre- 
diction, and, more generally, to make universal sequential 
decisions on the future outcomes of the observed sequence. An 
appropriate and, in fact, asymptotically optimal decision rule 
results from Bayes' rule as applied to the universal probability. 
For example, in the binary prediction case the rule may be 
stated as 

(21) 

where P ( d )  is the probability assigned to zt by the universal 
source. Such a scheme can be generalized to any decision 
problem with a specified loss function and a decision rule 
that results by minimization of the universal risk; i.e., the 
expected loss, where the expectation is taken with respect to 
the universal probability. 

We give a brief analysis of the binary prediction problem 
to illuminate the special role played by the code length as a 
risk function in Theorem 1 above. Consider first the Bernoulli 
source, where the tree T consists of the root with symbol 
probabilities PT (a1 A) = PT ( a). If U denotes the symbol which 
has the larger of the two probabilities and we always predict 
the next symbol as U ,  the fractional number of errors per 
symbol is 

0, i f P ( d 0 )  > P(zt1) 
X t + l  = { 1, i fP(Zt0)  5 P(zt1) 

~ n-1 

where 6(z,2) = 0 if 2 = z, and 1, otherwise. The mean per- 
symbol prediction error is then IIT = 1 - & ( U ) .  If the symbol 
that has the larger probability is not known, we may use the 
predictor (21), written as 2t+l = 0, if n,t(OlA) > t /2 and 
1, otherwise. Then, if l?(xn) denotes the associated fractional 
number of errors made in the string xn, obtained when U in 
(22) is replaced by this predictor, the mean error is given by 

E T ~ I ( X " )  = n~ + (1 - ~ ~ T ) P T ( D ~ ( u ) )  (23) 

where 

(x"1 xt > n/2}, if U = 0 

{xnl zt 5 n/2}, if U = 1. 
(24) t= l  F t=l  

Dn(U) = 

The tail probabilities are summable, converging in a monotone 
increasing manner to the limit 1/(2(1 - ~I IT) ' ) ,  evaluated in 
[9], which gives 
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This inequality without the expectation holds almost surely 
with respect to PT. surely. 

For tree sources the total number of errors made in the string 
x7' is the sum of the errors made in each context. Suppose 

one, and hence (28), without the expectation, holds almost 

APPENDIX I 
first that we know the data-generating tree machine with all PROOF OF LEMMA 1 
the conditional probabilities P(uIs)  at its leaves. Then by 
predicting each symbol as the one with the higher conditional 
probability in its context, we get with an extension of (22) the 
mean per symbol error as 

The error event Et is composed of two events. One way 
a string .rt can lead to a tree ?;, different from the data- 
generating tree T ,  is by overestimation; i.e., there is a leaf s in 
the set of leaves S of T and a deeper node S ~ L  with length not 

nT = pT(*S)nT 5 (26) exceeding g ( t )  in which A,t(su) 2 Clog(2 + 1). Clearly, if 
S E  5 

where I IT ,~  denotes the smaller of the two conditional symbol 
probabilities in a context s of stationary probability PT(s) .  
Suppose next that we do not know the conditional probabilities 
in the contexts and instead use the majority rule predictor. An 
extension of (25) to this case can be complicated. However, 
to illustrate our methods it suffices to express the upper bound 
in the nonexplicit form of [9, Theorem 21. If f i ~ ( . P )  denotes 
the fractional number of prediction errors made per symbol in 
the string .rn, we get the inequality 

ETTIT(XT?) - IIT 
. x  

(27) 

where each C T , ~  is a positive constant that depends on the tree 
source and on .s. One can further show [9], that in a suitable 
sense the right-hand side of (27) is also a lower bound on 
the expected fraction of extra errors over IIT made by any 
predictor. Unlike the lower bound for the code length [ 2 ] ,  one 
cannot expect any lower bound for the prediction error to hold 
simultaneously for all predictors and essentially all sources. 
For example, in the class of independent binary sources the 
trivial predictor jt+l = 0 has the mean per symbol error which 
equals the ideal I I T  for half of the sources, namely, whenever 
P(0)  2 l / 2 .  For the other half, however, the error will exceed 
the right-hand side of (25). See [9] for more details regarding 
the lower bound on prediction. 

Our main result in this section is to show that even with 
an unknown model structure the predictions can be done by 
the rule (21) with P ( x t )  given by the probability of the 
universal source. The resulting fraction f i ( , r r l )  of prediction 
errors satisfies 

EX- CT,S 

S€S ' I  

qu = {.l.tlA,t(.sU) 2 C l o g ( t  + 1)) 

then the set of the overestimation strings ma) be written as 

(AI) 
5€S 1 s 1 < 1 571 15 9( t )  

The other way is by underestimation, which we discuss after 
having dealt in Lemma 2 with the overestimation case. 

Lemma 2: Let C > 2 ( d  + 1). Then 
15 

t=l 

Proof Let xt belong to O:,, for some node S'U such that 
wc, where c E A. Clearly, we can write 'U that 

possibly empty, because the length of 
s E S and 'U 

way for some string 
U is at least one. We then have by ( I O )  

logPT(:rtIsO) = Il7(:rtlS) + ~ ~ ~ , . ~ ( I ~ . ~ . s ) I o ~ P ( u ~ s )  (A3) 
nt.4 

where we define 

z E S - { s }  nt.4 

Our plan is to replace the node s by the set of leaves { sv} of 
a smallest complete subtree of Tt rooted at s such that s'w is 
one of the leaves. Denote by S, the larger set of the leaves 
consisting of S - {s} U { s !u } .  This amounts to expressing 
n,t(uls) in terms of the sum 

I . #  I1 

s t S  
RSw(.rtlSS) = Il,,t(alz)logP(nlz). (A61 

z t S , - { w }  aE.4 
where K T . ~  is a positive constant. This is because even if the 
maximum loss of unity is added whenever there is an error 
in selecting the correct context of the data-generating tree T 
with the universal source, that is, whenever z t  E Et in the 
notation of Lemma 1, by this lemma the mean additional loss 
is uniformly bounded. Hence, a term KT,,/n gets added to the 

made cannot take place infinitely often with PT-probability 

If we replace in (A5) P(nls7l1) by P z t  ( ( L ( S T L I )  we get an upper 
bound for ~ O ~ P ~ ( Z ~ ~ ~ Y ~ ) .  And by further replacing n,t ( a l s w )  
by the sum 

per-symbol loss. Again by the Borel-Cantelli Lemma the error 1 71,t (UltSWb) 

be.4 
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we get the inequality 

logPT(:Ctl.sO) 5 R,u(.I.fIS,) 

+ 71, t (a~S1Ub) log~, t (a~sw) .  
nE.4 bE.4 

(A71 

Define next another process by the tree with the set of leaves 
S,,,, obtained from S,  by replacing the node s u i  by its sons, 
the possibly new all-zero initial context sk, and the leaf 
distributions given by Qs l l ( y t  Isb. d) defined as 

logC2su(ytI~4J.:I..t) = &,(YtlS,) 

+ 71Yt ((LIS'Ulb) log P,t ( U l S ' U )  

nE.4 b f r  

+ !riYt ( a ~ s u )  log P,t ( a / s u )  
aE.4 

of course, each of its shorter suffix strings, such as cba,  bu, 
and a. The rule for growing the tree 3 is such that if 

71,t ( U ] )  = c11,t ((1,I'tlJ) 

(I 

is not smaller than ctlv~l, then surely all of the nodes a ,  ab, 
abc, including 'UI = I L ~ C .  . ., will have been created as nodes 
of It. Therefore, since g ( t )  tends to infinity as t grows, for 
sufficiently large t the strings which cause this first type of 
underestimation belong to the set 

(A 10) U: = {x' 1 ~ 1 , ~  (s) < d / s / .  some s E Y'}. 

The second type of underestimation is by (14) seen to occur 
for strings in the set 

= { : ~ ~ l a , t ( ~ ~ )  < Clog(t  + 1). 
for some intemal node z of T .  all z7u E It}. (A1 1) 

Define the equivalence relation :yt xt if for every a in A,  
~ / , , ~ t  ( a l sw)  = ri,t ( ( L I s w )  and r i y t  (alsu) = 7i,t ( a l s t ~ ) .  This 
partitions the set into, say, /is,, equivalence classes. Let 
( ~ , t  be the equivalence class containing xt. Then for y* E o,t, 

The set of all strings that cause underestimation are then 
included in the union ut = U:LJU;. By Lemma 2, to complete 
the proof of Lemma 1 it suffices to show the following. 

Lemma 3: Let C > 2 ( d  + 1). Then 
A,,(su) = A,t(su), and with (13) 

log Q S , ,  (,ut I4l; ICt  1 = f l . S , , .  (?It IS, 1 

+ ay* ( S ' U ) .  

3i 

= p I - ( l . r ' ) I o g !  < x. (A 12) 
t= l  

+ 7lYt  ( f L lS ,U I )  log P,l (uIs.I) 
Prouc Assuming that the state probabilities are bounded 

away from zero, a well-known result in the theory of large 
deviations (see, for example, [2, eq. (A4)]) states that for 
sufficiently large t ,  any s E T ,  and any constant c 

n E .4 

With (A7) and (A8) this further implies 

l o g P ~ ( ? j ~ l . ~ 0 )  5 logQ,,(!/tI~b..~.t) - A,t(S7L). (A9) ~ ' T { T L , ~ ( s )  < C }  < 

for some constants G' > 0 and y > 1. It  follows that Since ( )s , , (~ , t l~sb . : r t )  5 1, we get the inequality 
-x 

PT((T,t IS,)) 5 2-Art(su)  < - ( t  + 1)-c ~ P T ( u : ) l o g l  < x. 
t = l  

and 
We consider next the event rJ i .  Let T' denote the set of 

nodes 111 in T for which u i b  is a leaf of 7' for every b E A .  
Clearly, any intemal node of T either belongs to T' or has a 
descendant in  77'. Therefore. (AI 1) takes the form 

U: = {.rt la,! (,lfI,(Lb) < Clog ( f  + I ) .  

P T ( ~ ~ : , l J . ~ , d  5 kLsu(2. + 
Since O 5 ri , t  ( u l s ~ t u )  5 t and O 5 r ~ , ~ t  ( u I s , u )  5 b for a ranging 
over A .  there can be no more than (t+l)*" equivalence classes. 
Further, there are no more than d g ( t )  distinct sequences su, 
which for for some t i i  E T'. and all w u b  E 3). 

log t 
y( t )  = - log d Note that ,U may be the null string A. Thus with - 

and C > 2 ( d  + 1) implies 

for the positive number F = C - 2 ( d +  1). This completes the 
proof of Lemma 2. 

We now turn to the underestimation case. Underestimation 
can take place in two ways. First, it may happen that the string 
: I : ~  is such that the set of searched nodes does not even include 
the entire tree 7'. This will happen if either the length of the 
deepest leaf in '1' exceeds y ( t )  or if the string :ct is such that 
the set of the created nodes It does not include 7'. Further, 
whenever a string tfi = . . . ( : h L  occurs in the string .E* so does, 

U; & { . I ~ t ~ a z t ( , u m )  < dClog(t + 1) 
for some 'tu E T' and every 7 , } .  

To upper-bound the probability of U: we use techniques from 
the theory of large deviations as applied to Markov chains; 
in particular, a well-known lemma due to Csiszir, Cover, and 
Choi [ I O ,  Lemma 2(a)]. Since not every minimal complete 
tree ?' admits an FSM implementation we must first define 
an FSMX source equivalent to the data-generating source. Let 
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R denote the smallest complete supertree of T that defines 
an FSMX source, and let L denote the set of its leaves. For 
every leaf z E T ,  assign the conditional probability P(.lz)  to 
each extended node zu, where zu E L. Taking the all-zero 
initial state s'o E L, we obtain an FSMX source P ~ ( X ~ l d 0 )  

which is equivalent with P T ( X ~ ~ I ~ S ~ ) .  Consider the subtree of 
R rooted at w and defined by the descendants of w E T'. 
Denote the set of leaves of this subtree by L(w) and the set 
of its internal nodes, including the root w, by R(w) .  Clearly, 
we can assume that R ( w )  is a subtree of 3, for otherwise we 
could proceed as with U:. With these definitions we have 

U; C {d S , ~ ( Z )  < IR(w)ldClog(t+ 1). 
zER(w)  

for some w E T'} .  

Now, define 

O,t(v,)= S z t ( z ) .  

Finally, let I? denote the set of distributions over L x L defined 
by Q ( . ;  .) E r iff 

Note that F ( Q )  2 0 for every distribution Q. By (A13) and 
the definition of it follows that xt E U:,,€ if and only if 
P,t( . .  .) E r or, equivalently 

PR(U:,~IS'~) = p R { F , t ( . .  E rlsb}. 
Denote by I'o the set of distributions belonging to the closure 
of I? (relative to the set of all distributions over L x L )  and for 
which the two marginals are identical. By the above mentioned 
large deviations lemma we then obtain 

1 
t-co t 

lirrisup - log pR{PXt (.. .) E rl&} I - D  

where zER(zu) 

It can be readily verified that 

Clearly, it suffices to show that for every w E T' and some 
F ( W )  > 0, the set 

U:,,e E { x t  E A t I t - l R z t ( ~ )  I €(tu)} 
satisfies 

oc 

c P R ( u :  EISb)logt < x. (A 14) 

We prove (A14) using Csiszir, Cover, and Choi's lemma, 
which requires that the error event be given in terms of a 
set of probability distributions such that it includes a certain 
empirical distribution derived from d E U:,,. For each s E L 
let S ( U )  denote the leaf in L defined by the longest path as in 
R. In other words, since R admits an FSMX implementation 
we may view s as a state of an FSM and s ( a )  is the next state 
into which the symbol a takes s according to (5) .  Consider the 
two-dimensional empirical distribution defined over L x L 

t= l  

t-ln,t(uls), i f z  = s ( a ) .  somea E A 
otherwise. P,* (s. 2 )  

Note that 

In general, the marginals of this distribution are not equal. 
For a distribution Q(.: .) over L x L,  let Q(.) denote its left 
marginal. Define 

Further let 
C Q ( z . s )  

, s E L .  w E T'. Q ( z )  # 0. 
z E L ( w )  

Q(.slw) = 
Z E L ( W )  c Q(4 Z € L ( u ; )  

(Here 0 log 0 = 0 log 1 = 0 and log $ = x. if h > 0). Clearly, 
P(z ls )  is unambiguously determined by P(a1s) for U E A. 
Note that, by the definition of r, D is independent o f t ,  and in 
order to prove (A14) it suffices to show that there exists 6 > 0 
such that if t (w)  < 6 then D # 0. Now, by the irreducibility 
of the Markov chain defining the source P R ( X ~ ) ,  it can be 
readily seen that the unique distribution Qo(.. .) over L x L 
with two identical marginals for which D(QoIIP~) = 0 is 

Q o ( s , z )  = P i ( s )  x P(z1s). s . z  E L 

where P i (  .) denotes the (unique) stationary distribution de- 
fined by r(./.). Now, define b E t(Qo). Clearly, if 6 = 0 then 
the distribution Qo( . l z )  = P(. lz)  must be the same for every 
z E L(?u). Hence b > 0, for otherwise the set of leaves wb 
of T ,  b E A, could be replaced by U! to obtain an equivalent 
source, thus contradicting the minimality of T .  Therefore, with 
E(W) < 6, it follows that Qo(.. .) is not in ro. Consequently, 
D # 0, and the proof is complete. 

APPENDIX I1 
PROOF OF THEOREM 1 

We prove the theorem for the probability assignment (10) 
with the initial all-zero context so. By Lemma 1 and the 
Borel-Cantelli Lemma, the set C of infinite d-ary sequences 
for which there exists an integer N ( z )  such that for every 
t > N ( z ) ,  Tt = T ,  has &-probability 1. Let k,t(T) denote 
the empirical conditional entropy of a sequence zt  with respect 
to T ,  namely 
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Had the universal probability (16) and (17) been computed 
using the true (unknown) tree T instead of Tt, we would have 
obtained for every xt, [SI 

K(d - 1) 
-tP1 log P ( d )  5 fi,f ( T )  + 7 logt + 0 ( t - l ) .  

Therefore, for every z E C and every t > N ( z )  we have 

N(X)  -t-l l o g P ( d )  5 ~ log (2 lv (x)  + d )  + Hzt(T) 
t 
K ( d -  1) +- logt + 0 ( t - l ) .  (A15) 2t 

K(d - 1) 
-~ logt] < x}. (A16) 

2 
By (A15) and (A16), C is a subset of B and, consequently, 
&(B)  = 1. Furthermore, by the asymptotic equipartition 
property 

t-’ log P T ( z ~ )  + f i z t  ( T )  + 0 

with &-probability 1, which completes the proof of (18). 

in [6, Theorem 4(a)]. 
The inequality (19) follows from Lemma 1 by the arguments 

APPENDIX I11 

In this appendix we describe an efficient updating of the 
trees Tt. Actually, by examining the nodes stated at the end 
of Section 111 only, we do not maintain the trees T,, but 
rather certain slightly bigger trees, say Tt. The nodes of Tt 
and Tt along the current path xt.c-l . . .  are identical, and 
thus the difference between them does not affect the context 
selection. At the nodes w along the other paths no updating of 
It takes place so A,t (w)  = A,t-, (w) ,  but it may happen that 
a deepest node IU* where A,t-, ( w * )  2 C log t was true ceases 
to satisfy this relation when t - 1 is replaced by t .  Hence, such 
a node may no longer belong to Tt, and if we leave it in Tt 
(to avoid visiting too many nodes) we get Tt 2 Tt. On the 
other hand, at the nodes outside of Tt-l, A,t-l(w) < C l o g t  
is true, and it remains to hold when t - 1 is replaced by t 
unless A,t-~(w) gets updated, which can take place only at 
the nodes along the current path and their offsprings. 

In order to update Tt-l we proceed as follows. Having 
found a$, two cases can occur: Either wZ; is in the tree Tt-l, 

or it is deeper than the corresponding leaf, say z t - l .  In the 
latter case, st = w2, and the algorithm extends Tt-l to Tt by 
flipping the flag to 1 at each node along the path between the 
leaf zt-l of Tt-l and 7.: as well as their son nodes, except 
those of ,w;, which is a leaf. The former case, where , I ~ I T  falls 
within Tt-l is a bit more involved. If ‘iu; is a leaf, clearly 
st = ..I;. In the remaining case, where ,U$+ is an internal node, 
the question is whether or not the tree ?’t-l can be pruned 
at this node and hence making it  a leaf. To find out we must 
check if any path in Tt-l, starting at ‘w;, has a node where 

holds and whose length does not exceed ! I ( / ) ,  of course. If 
such paths exist, we must retain them in Ft, and we set st as 
the son node of w; ,  defined by the current path. In addition, 
we prune the tree TtP1 at all the son nodes of w; which were 
not retained by the path check just made. 
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